Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Biol Cell ; 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794267

RESUMO

The yeast bc1 complex (complex III) and cytochrome oxidase (complex IV) are mosaics of core subunits encoded by the mitochondrial genome and additional nuclear-encoded proteins imported from the cytosol. Both complexes build in the mitochondrial inner membrane various supramolecular assemblies. The formation of the individual complexes and their supercomplexes depends on the activity of dedicated assembly factors. We identified a so far uncharacterized mitochondrial protein (open reading frame YDR381C-A) as an important assembly factor for complex III, complex IV, and their supercomplexes. Therefore, we named this protein Cox interacting (Coi) 1. Deletion of COI1 results in decreased respiratory growth, reduced membrane potential, and hampered respiration, as well as slow fermentative growth at low temperature. In addition, coi1Δ cells harbour reduced steady-state levels of subunits of complexes III and IV as well as of the assembled complexes and supercomplexes. Interaction of Coi1 with respiratory chain subunits seems transient, as it appears to be a stoichiometric subunit neither of complex III nor of complex IV. Collectively, this work identifies a novel protein that plays a role in the assembly of the mitochondrial respiratory chain.

2.
J Biol Chem ; 292(13): 5216-5226, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28167530

RESUMO

The yeast Rcf1 protein is a member of the conserved family of proteins termed the hypoxia-induced gene (domain) 1 (Hig1 or HIGD1) family. Rcf1 interacts with components of the mitochondrial oxidative phosphorylation system, in particular the cytochrome bc1 (complex III)-cytochrome c oxidase (complex IV) supercomplex (termed III-IV) and the ADP/ATP carrier proteins. Rcf1 plays a role in the assembly and modulation of the activity of complex IV; however, the molecular basis for how Rcf1 influences the activity of complex IV is currently unknown. Hig1 type 2 isoforms, which include the Rcf1 protein, are characterized in part by the presence of a conserved motif, (Q/I)X3(R/H)XRX3Q, termed here the QRRQ motif. We show that mutation of conserved residues within the Rcf1 QRRQ motif alters the interactions between Rcf1 and partner proteins and results in the destabilization of complex IV and alteration of its enzymatic properties. Our findings indicate that Rcf1 does not serve as a stoichiometric component, i.e. as a subunit of complex IV, to support its activity. Rather, we propose that Rcf1 serves to dynamically interact with complex IV during its assembly process and, in doing so, regulates a late maturation step of complex IV. We speculate that the Rcf1/Hig1 proteins play a role in the incorporation and/or remodeling of lipids, in particular cardiolipin, into complex IV and. possibly, other mitochondrial proteins such as ADP/ATP carrier proteins.


Assuntos
Motivos de Aminoácidos/genética , Análise Mutacional de DNA , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Cardiolipinas/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Free Radic Biol Med ; 102: 57-66, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27863990

RESUMO

Measuring NADPH oxidase (Nox)-derived reactive oxygen species (ROS) in living tissues and cells is a constant challenge. All probes available display limitations regarding sensitivity, specificity or demand highly specialized detection techniques. In search for a presumably easy, versatile, sensitive and specific technique, numerous studies have used NADPH-stimulated assays in membrane fractions which have been suggested to reflect Nox activity. However, we previously found an unaltered activity with these assays in triple Nox knockout mouse (Nox1-Nox2-Nox4-/-) tissue and cells compared to wild type. Moreover, the high ROS production of intact cells overexpressing Nox enzymes could not be recapitulated in NADPH-stimulated membrane assays. Thus, the signal obtained in these assays has to derive from a source other than NADPH oxidases. Using a combination of native protein electrophoresis, NADPH-stimulated assays and mass spectrometry, mitochondrial proteins and cytochrome P450 were identified as possible source of the assay signal. Cells lacking functional mitochondrial complexes, however, displayed a normal activity in NADPH-stimulated membrane assays suggesting that mitochondrial oxidoreductases are unlikely sources of the signal. Microsomes overexpressing P450 reductase, cytochromes b5 and P450 generated a NADPH-dependent signal in assays utilizing lucigenin, L-012 and dihydroethidium (DHE). Knockout of the cytochrome P450 reductase by CRISPR/Cas9 technology (POR-/-) in HEK293 cells overexpressing Nox4 or Nox5 did not interfere with ROS production in intact cells. However, POR-/- abolished the signal in NADPH-stimulated assays using membrane fractions from the very same cells. Moreover, membranes of rat smooth muscle cells treated with angiotensin II showed an increased NADPH-dependent signal with lucigenin which was abolished by the knockout of POR but not by knockout of p22phox. IN CONCLUSION: the cytochrome P450 system accounts for the majority of the signal of Nox activity chemiluminescence based assays.


Assuntos
Acridinas/metabolismo , Angiotensina II/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Grupo dos Citocromos b/genética , NADPH Oxidases/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Acridinas/química , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Células HEK293 , Humanos , Luminescência , Membranas/química , Membranas/metabolismo , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , NADP/metabolismo , NADPH Oxidase 1/genética , NADPH Oxidase 2/genética , NADPH Oxidase 4/genética , NADPH Oxidases/metabolismo , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismo
4.
PLoS One ; 11(8): e0160258, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27479602

RESUMO

Mitochondrial cristae are connected to the inner boundary membrane via crista junctions which are implicated in the regulation of oxidative phosphorylation, apoptosis, and import of lipids and proteins. The MICOS complex determines formation of crista junctions. We performed complexome profiling and identified Mic13, also termed Qil1, as a subunit of the MICOS complex. We show that MIC13 is an inner membrane protein physically interacting with MIC60, a central subunit of the MICOS complex. Using the CRISPR/Cas method we generated the first cell line deleted for MIC13. These knockout cells show a complete loss of crista junctions demonstrating that MIC13 is strictly required for the formation of crista junctions. MIC13 is required for the assembly of MIC10, MIC26, and MIC27 into the MICOS complex. However, it is not needed for the formation of the MIC60/MIC19/MIC25 subcomplex suggesting that the latter is not sufficient for crista junction formation. MIC13 is also dispensable for assembly of respiratory chain complexes and for maintaining mitochondrial network morphology. Still, lack of MIC13 resulted in a moderate reduction of mitochondrial respiration. In summary, we show that MIC13 has a fundamental role in crista junction formation and that assembly of respiratory chain supercomplexes is independent of mitochondrial cristae shape.


Assuntos
Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas/genética , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Microscopia Eletrônica , Microscopia de Fluorescência , Proteínas Mitocondriais/química , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Fosforilação Oxidativa , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência
5.
Am J Hum Genet ; 99(1): 217-27, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27374774

RESUMO

Complex I deficiency is the most common biochemical phenotype observed in individuals with mitochondrial disease. With 44 structural subunits and over 10 assembly factors, it is unsurprising that complex I deficiency is associated with clinical and genetic heterogeneity. Massively parallel sequencing (MPS) technologies including custom, targeted gene panels or unbiased whole-exome sequencing (WES) are hugely powerful in identifying the underlying genetic defect in a clinical diagnostic setting, yet many individuals remain without a genetic diagnosis. These individuals might harbor mutations in poorly understood or uncharacterized genes, and their diagnosis relies upon characterization of these orphan genes. Complexome profiling recently identified TMEM126B as a component of the mitochondrial complex I assembly complex alongside proteins ACAD9, ECSIT, NDUFAF1, and TIMMDC1. Here, we describe the clinical, biochemical, and molecular findings in six cases of mitochondrial disease from four unrelated families affected by biallelic (c.635G>T [p.Gly212Val] and/or c.401delA [p.Asn134Ilefs(∗)2]) TMEM126B variants. We provide functional evidence to support the pathogenicity of these TMEM126B variants, including evidence of founder effects for both variants, and establish defects within this gene as a cause of complex I deficiency in association with either pure myopathy in adulthood or, in one individual, a severe multisystem presentation (chronic renal failure and cardiomyopathy) in infancy. Functional experimentation including viral rescue and complexome profiling of subject cell lines has confirmed TMEM126B as the tenth complex I assembly factor associated with human disease and validates the importance of both genome-wide sequencing and proteomic approaches in characterizing disease-associated genes whose physiological roles have been previously undetermined.


Assuntos
Alelos , Complexo I de Transporte de Elétrons/deficiência , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Mutação/genética , Fenótipo , Adolescente , Adulto , Idade de Início , Sequência de Aminoácidos , Criança , Complexo I de Transporte de Elétrons/genética , Feminino , Humanos , Lactente , Masculino , Proteínas de Membrana/química , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
6.
Acta Neuropathol ; 132(3): 453-73, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27393313

RESUMO

Secondary mitochondrial dysfunction is a feature in a wide variety of human protein aggregate diseases caused by mutations in different proteins, both in the central nervous system and in striated muscle. The functional relationship between the expression of a mutated protein and mitochondrial dysfunction is largely unknown. In particular, the mechanism how this dysfunction drives the disease process is still elusive. To address this issue for protein aggregate myopathies, we performed a comprehensive, multi-level analysis of mitochondrial pathology in skeletal muscles of human patients with mutations in the intermediate filament protein desmin and in muscles of hetero- and homozygous knock-in mice carrying the R349P desmin mutation. We demonstrate that the expression of mutant desmin causes disruption of the extrasarcomeric desmin cytoskeleton and extensive mitochondrial abnormalities regarding subcellular distribution, number and shape. At the molecular level, we uncovered changes in the abundancy and assembly of the respiratory chain complexes and supercomplexes. In addition, we revealed a marked reduction of mtDNA- and nuclear DNA-encoded mitochondrial proteins in parallel with large-scale deletions in mtDNA and reduced mtDNA copy numbers. Hence, our data demonstrate that the expression of mutant desmin causes multi-level damage of mitochondria already in early stages of desminopathies.


Assuntos
Desmina/genética , Filamentos Intermediários/patologia , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/genética , Animais , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Desmina/metabolismo , Humanos , Filamentos Intermediários/genética , Camundongos Transgênicos , Mitocôndrias/patologia , Doenças Musculares/patologia , Mutação/genética
7.
Biochim Biophys Acta ; 1863(7 Pt A): 1643-52, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27091403

RESUMO

Here we identified a hydrophobic 6.4kDa protein, Cox26, as a novel component of yeast mitochondrial supercomplex comprising respiratory complexes III and IV. Multi-dimensional native and denaturing electrophoretic techniques were used to identify proteins interacting with Cox26. The majority of the Cox26 protein was found non-covalently bound to the complex IV moiety of the III-IV supercomplexes. A population of Cox26 was observed to exist in a disulfide bond partnership with the Cox2 subunit of complex IV. No pronounced growth phenotype for Cox26 deficiency was observed, indicating that Cox26 may not play a critical role in the COX enzymology, and we speculate that Cox26 may serve to regulate or support the Cox2 protein. Respiratory supercomplexes are assembled in the absence of the Cox26 protein, however their pattern slightly differs to the wild type III-IV supercomplex appearance. The catalytic activities of complexes III and IV were observed to be normal and respiration was comparable to wild type as long as cells were cultivated under normal growth conditions. Stress conditions, such as elevated temperatures resulted in mild decrease of respiration in non-fermentative media when the Cox26 protein was absent.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Catálise , Dissulfetos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Eletroforese , Estabilidade Enzimática , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Peso Molecular , Consumo de Oxigênio , Ligação Proteica , Desnaturação Proteica , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Temperatura
8.
PLoS One ; 9(12): e114918, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506927

RESUMO

Recently, mutations in the mitochondrial translation optimization factor 1 gene (MTO1) were identified as causative in children with hypertrophic cardiomyopathy, lactic acidosis and respiratory chain defect. Here, we describe an MTO1-deficient mouse model generated by gene trap mutagenesis that mirrors the human phenotype remarkably well. As in patients, the most prominent signs and symptoms were cardiovascular and included bradycardia and cardiomyopathy. In addition, the mutant mice showed a marked worsening of arrhythmias during induction and reversal of anaesthesia. The detailed morphological and biochemical workup of murine hearts indicated that the myocardial damage was due to complex I deficiency and mitochondrial dysfunction. In contrast, neurological examination was largely normal in Mto1-deficient mice. A translational consequence of this mouse model may be to caution against anaesthesia-related cardiac arrhythmias which may be fatal in patients.


Assuntos
Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Proteínas de Transporte/genética , Técnicas de Silenciamento de Genes , Coração/fisiopatologia , Miocárdio/patologia , Animais , Cardiomiopatias/patologia , DNA Mitocondrial/genética , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/genética , Feminino , Dosagem de Genes , Genes Mitocondriais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais , Fosforilação Oxidativa , Proteínas de Ligação a RNA
9.
Acta Medica (Hradec Kralove) ; 57(2): 41-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25257149

RESUMO

Egg-oil (Charismon©) is known for its beneficial action in wound healing and other skin irritancies and its antibacterial activity. The physiological basis for these actions has been investigated using cells in culture: HaCaT-cells (immortalized human keratinocytes), human endothelial cells in culture (HUVEC), peripheral blood mononuclear lymphocytes (PBML) and a full thickness human skin model (FTSM). Emphasis was on the influence of egg-oil on cell migration and IL-8 production in HaCaT cells, respiration, mitochondrial membrane potential, reactive oxygen (ROS) production and proliferation in HUVEC and HaCaT cells, cytokine and interleukin production in PBML and UV-light induced damage of FTSM. IL-8 production by HaCaT cells is stimulated by egg-oil whilst in phythemagglutin in-activated PBMLs production of the interleukins IL-2, IL-6, IL-10 and IFN-γ and TFN-α is reduced. ROS-production after H(2)O(2) stimulation first is enhanced but later on reduced. Respiration becomes activated due to partial uncoupling of the mitochondrial respiratory chain and proliferation of HaCaT and HUVEC is reduced. Recovery of human epidermis cells in FTSM after UV-irradiation is strongly supported by egg-oil. These results support the view that egg-oil acts through reduction of inflammatory processes and ROS production. Both these processes are equally important in cellular aging as in healing of chronic wounds.


Assuntos
Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Ovos , Células Epidérmicas , Óleos/farmacologia , Queimadura Solar/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Galinhas , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óleos/química , Espécies Reativas de Oxigênio/metabolismo
10.
Mol Genet Metab ; 111(3): 342-352, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24461907

RESUMO

Defects of mitochondrial oxidative phosphorylation (OXPHOS) are associated with a wide range of clinical phenotypes and time courses. Combined OXPHOS deficiencies are mainly caused by mutations of nuclear genes that are involved in mitochondrial protein translation. Due to their genetic heterogeneity it is almost impossible to diagnose OXPHOS patients on clinical grounds alone. Hence next generation sequencing (NGS) provides a distinct advantage over candidate gene sequencing to discover the underlying genetic defect in a timely manner. One recent example is the identification of mutations in MTFMT that impair mitochondrial protein translation through decreased formylation of Met-tRNA(Met). Here we report the results of a combined exome sequencing and candidate gene screening study. We identified nine additional MTFMT patients from eight families who were affected with Leigh encephalopathy or white matter disease, microcephaly, mental retardation, ataxia, and muscular hypotonia. In four patients, the causal mutations were identified by exome sequencing followed by stringent bioinformatic filtering. In one index case, exome sequencing identified a single heterozygous mutation leading to Sanger sequencing which identified a second mutation in the non-covered first exon. High-resolution melting curve-based MTFMT screening in 350 OXPHPOS patients identified pathogenic mutations in another three index cases. Mutations in one of them were not covered by previous exome sequencing. All novel mutations predict a loss-of-function or result in a severe decrease in MTFMT protein in patients' fibroblasts accompanied by reduced steady-state levels of complex I and IV subunits. Being present in 11 out of 13 index cases the c.626C>T mutation is one of the most frequent disease alleles underlying OXPHOS disorders. We provide detailed clinical descriptions on eleven MTFMT patients and review five previously reported cases.


Assuntos
Hidroximetil e Formil Transferases/genética , Doença de Leigh/genética , Fosforilação Oxidativa , Biossíntese de Proteínas , Adolescente , Adulto , Criança , Pré-Escolar , Exoma , Feminino , Estudos de Associação Genética , Humanos , Hidroximetil e Formil Transferases/metabolismo , Lactente , Recém-Nascido , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , RNA de Transferência de Metionina/genética , Análise de Sequência de DNA
11.
Methods Mol Biol ; 1033: 363-79, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23996189

RESUMO

Blue native electrophoresis (BNE) is a long established method for the analysis of native protein complexes. Applications of BNE range from investigating subunit composition, stoichiometry, and assembly of single protein complexes to profiling of whole complexomes. BNE is an indispensible tool to diagnostically analyze cells and tissues from patients with mitochondrial disorders or model organisms. Since functional proteomic studies often require quantification of protein complexes, we describe here different quantification methods subsequent to protein complex separation by BNE.


Assuntos
Eletroforese em Gel de Poliacrilamida , Proteínas de Membrana/química , Proteínas Mitocondriais/química , Complexos Multiproteicos/química , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Proteômica/métodos
12.
J Inherit Metab Dis ; 36(1): 55-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22562699

RESUMO

Defects of mitochondrial oxidative phosphorylation constitute a clinical and genetic heterogeneous group of disorders affecting multiple organ systems at varying age. Biochemical analysis of biopsy material demonstrates isolated or combined deficiency of mitochondrial respiratory chain enzyme complexes. Co-occurrence of impaired activity of the pyruvate dehydrogenase complex has been rarely reported so far and is not yet fully understood. We investigated two siblings presenting with severe neonatal lactic acidosis, hypotonia, and intractable cardiomyopathy; both died within the first months of life. Muscle biopsy revealed a peculiar biochemical defect consisting of a combined deficiency of respiratory chain complexes I, II, and II+III accompanied by a defect of the pyruvate dehydrogenase complex. Joint exome analysis of both affected siblings uncovered a homozygous missense mutation in BOLA3. The causal role of the mutation was validated by lentiviral-mediated expression of the mitochondrial isoform of wildtype BOLA3 in patient fibroblasts, which lead to an increase of both residual enzyme activities and lipoic acid levels. Our results suggest that BOLA3 plays a crucial role in the biogenesis of iron-sulfur clusters necessary for proper function of respiratory chain and 2-oxoacid dehydrogenase complexes. We conclude that broad sequencing approaches combined with appropriate prioritization filters and experimental validation enable efficient molecular diagnosis and have the potential to discover new disease loci.


Assuntos
Doenças Mitocondriais/genética , Mutação de Sentido Incorreto , Proteínas/genética , Sequência de Aminoácidos , Transporte de Elétrons/genética , Feminino , Fibroblastos/metabolismo , Homozigoto , Humanos , Recém-Nascido , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais , Dados de Sequência Molecular , Fosforilação Oxidativa , Complexo Piruvato Desidrogenase/genética , Irmãos , Ácido Tióctico/metabolismo
13.
J Med Genet ; 49(4): 277-83, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22499348

RESUMO

BACKGROUND: Next generation sequencing has become the core technology for gene discovery in rare inherited disorders. However, the interpretation of the numerous sequence variants identified remains challenging. We assessed the application of exome sequencing for diagnostics in complex I deficiency, a disease with vast genetic heterogeneity. METHODS: Ten unrelated individuals with complex I deficiency were selected for exome sequencing and sequential bioinformatic filtering. Cellular rescue experiments were performed to verify pathogenicity of novel disease alleles. RESULTS: The first filter criterion was 'Presence of known pathogenic complex I deficiency variants'. This revealed homozygous mutations in NDUFS3 and ACAD9 in two individuals. A second criterion was 'Presence of two novel potentially pathogenic variants in a structural gene of complex I', which discovered rare variants in NDUFS8 in two unrelated individuals and in NDUFB3 in a third. Expression of wild-type cDNA in mutant cell lines rescued complex I activity and assembly, thus providing a functional validation of their pathogenicity. Using the third criterion 'Presence of two potentially pathogenic variants in a gene encoding a mitochondrial protein', loss-of-function mutations in MTFMT were discovered in two patients. In three patients the molecular genetic correlate remained unclear and follow-up analysis is ongoing. CONCLUSION: Appropriate in silico filtering of exome sequencing data, coupled with functional validation of new disease alleles, is effective in rapidly identifying disease-causative variants in known and new complex I associated disease genes.


Assuntos
Exoma , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Análise de Sequência de DNA , Substituição de Aminoácidos , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Expressão Gênica , Humanos , Mutação , NADH Desidrogenase/genética
14.
Nat Genet ; 42(12): 1131-4, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21057504

RESUMO

An isolated defect of respiratory chain complex I activity is a frequent biochemical abnormality in mitochondrial disorders. Despite intensive investigation in recent years, in most instances, the molecular basis underpinning complex I defects remains unknown. We report whole-exome sequencing of a single individual with severe, isolated complex I deficiency. This analysis, followed by filtering with a prioritization of mitochondrial proteins, led us to identify compound heterozygous mutations in ACAD9, which encodes a poorly understood member of the mitochondrial acyl-CoA dehydrogenase protein family. We demonstrated the pathogenic role of the ACAD9 variants by the correction of the complex I defect on expression of the wildtype ACAD9 protein in fibroblasts derived from affected individuals. ACAD9 screening of 120 additional complex I-defective index cases led us to identify two additional unrelated cases and a total of five pathogenic ACAD9 alleles.


Assuntos
Acil-CoA Desidrogenases/genética , Complexo I de Transporte de Elétrons/deficiência , Éxons/genética , Mutação/genética , Análise de Sequência de DNA , Acil-CoA Desidrogenases/química , Sequência de Aminoácidos , Linhagem Celular , Criança , Pré-Escolar , Complexo I de Transporte de Elétrons/metabolismo , Eletroforese em Gel Bidimensional , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Teste de Complementação Genética , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Riboflavina/farmacologia , Transdução Genética
15.
Proteomics ; 10(18): 3379-87, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20687061

RESUMO

Here, we expand the application of blue native electrophoresis to the separation of mega protein complexes larger than 10 MDa by introducing novel large pore acrylamide gels. We tailored the bis-acrylamide cross-linker amounts relative to the acrylamide monomer to enlarge the pore size of acrylamide gels and to obtain elastic and sufficiently stable gels. The novel gel types were then used to search for suprastructures of mitochondrial respiratory supercomplexes, the hypothetical respiratory strings, or patches. We identified 4-8 MDa assemblies that contain respiratory complexes I, III, and IV and most likely represent dimers, trimers, and tetramers of respiratory supercomplexes. We also isolated multimeric respiratory supercomplexes with apparent masses of 35-45 MDa, the presumed core pieces of respiratory strings or patches. Electron microscopic investigations will be required to clarify whether the isolated assemblies of complexes are ordered and specific, as predicted for respiratory strings and patches in the mitochondrial membrane.


Assuntos
Proteoma/isolamento & purificação , Proteômica/métodos , Cor , Eletroforese , Mitocôndrias/química , Peso Molecular , Porosidade
16.
PLoS One ; 5(7): e11910, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20689601

RESUMO

BACKGROUND: Mitochondria, the main suppliers of cellular energy, are dynamic organelles that fuse and divide frequently. Constraining these processes impairs mitochondrial is closely linked to certain neurodegenerative diseases. It is proposed that functional mitochondrial dynamics allows the exchange of compounds thereby providing a rescue mechanism. METHODOLOGY/PRINCIPAL FINDINGS: The question discussed in this paper is whether fusion and fission of mitochondria in different cell lines result in re-localization of respiratory chain (RC) complexes and of the ATP synthase. This was addressed by fusing cells containing mitochondria with respiratory complexes labelled with different fluorescent proteins and resolving their time dependent re-localization in living cells. We found a complete reshuffling of RC complexes throughout the entire chondriome in single HeLa cells within 2-3 h by organelle fusion and fission. Polykaryons of fused cells completely re-mixed their RC complexes in 10-24 h in a progressive way. In contrast to the recently described homogeneous mixing of matrix-targeted proteins or outer membrane proteins, the distribution of RC complexes and ATP synthase in fused hybrid mitochondria, however, was not homogeneous but patterned. Thus, complete equilibration of respiratory chain complexes as integral inner mitochondrial membrane complexes is a slow process compared with matrix proteins probably limited by complete fusion. In co-expressing cells, complex II is more homogenously distributed than complex I and V, resp. Indeed, this result argues for higher mobility and less integration in supercomplexes. CONCLUSION/SIGNIFICANCE: Our results clearly demonstrate that mitochondrial fusion and fission dynamics favours the re-mixing of all RC complexes within the chondriome. This permanent mixing avoids a static situation with a fixed composition of RC complexes per mitochondrion.


Assuntos
Mitocôndrias/metabolismo , Eletroforese , Eletroforese em Gel Bidimensional , Células HeLa , Humanos , Fusão de Membrana/fisiologia , Microscopia Eletrônica , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Consumo de Oxigênio
17.
Biochim Biophys Acta ; 1798(11): 2022-32, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20655870

RESUMO

Molecular mobility in membranes of intracellular organelles is poorly understood, due to the lack of experimental tools applicable for a great diversity of shapes and sizes such organelles can acquire. Determinations of diffusion within the plasma membrane or cytosol are based mostly on the assumption of an infinite flat space, not valid for curved membranes of smaller organelles. Here we extend the application of FRAP to mitochondria of living cells by application of numerical analysis to data collected from a small region inside a single organelle. The spatiotemporal pattern of light pulses generated by the laser scanning microscope during the measurement is reconstructed in silico and consequently the values of diffusion parameters best suited to the particular organelle are found. The mobility of the outer membrane proteins hFis and Tom7, as well as oxidative phosphorylation complexes COX and F(1)F(0) ATPase located in the inner membrane is analyzed in detail. Several alternative models of diffusivity applied to these proteins provide insight into the mechanisms determining the rate of motion in each of the membranes. Tom7 and hFis move along the mitochondrial axis in the outer membrane with similar diffusion coefficients (D=0.7µm(2)/s and 0.6µm(2)/s respectively) and equal immobile fraction (7%). The notably slower motion of the inner membrane proteins is best represented by a dual-component model with approximately equal partitioning of the fractions (F(1)F(0) ATPase: 0.4µm(2)/s and 0.0005µm(2)/s; COX: 0.3µm(2)/s and 0.007µm(2)/s). The mobility patterns specific for the membranes of this organelle are unambiguously distinguishable from those of the plasma membrane or artificial lipid environments: The parameters of mitochondrial proteins indicate a distinct set of factors responsible for their diffusion characteristics.


Assuntos
Recuperação de Fluorescência Após Fotodegradação/métodos , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Difusão , Células HeLa , Humanos , Transporte Proteico
18.
Mech Ageing Dev ; 131(1): 48-59, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19948180

RESUMO

Elevated reactive oxygen species (ROS) levels have been observed in mammals during aging, implying an important role of ROS in the aging process. Most bird species are known to live longer and to contain lower ROS levels than mammals of the same body weight. The influence of ROS on the aging process of birds has been investigated using pigeon embryonic fibroblasts (PEF) and chicken embryonic fibroblasts (CEF). ROS levels in young avian cells were much lower than in human cells. When cultivated till replicative senescence, PEF proliferated about one-third longer compared to CEF. However, both senescent avian cell populations showed no increased ROS levels or accumulation of ROS-induced damage on the mtDNA or protein level. The investigation for quality control (QC) mechanisms revealed that the autophagosomal/lysosomal pathway was not downregulated in old avian cells and stable overexpression of the autophagy protein ATG5 improved mitochondrial fitness, enhanced the resistance against oxidative stress and prolonged the life span of CEF. Oxidative stress-mediated apoptosis induced a dose-dependent cell proliferation in CEF as well as in PEF. Taken together, our data indicate that autophagy and compensatory proliferation act as QC mechanisms, while ROS did not influence the aging process in avian cells.


Assuntos
Autofagia , Proliferação de Células , Senescência Celular , Fibroblastos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Autofagia/genética , Sobrevivência Celular , Células Cultivadas , Senescência Celular/genética , Embrião de Galinha , Columbidae , Dano ao DNA , DNA Mitocondrial/metabolismo , Fibroblastos/patologia , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Carbonilação Proteica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...